Metamath Proof Explorer


Theorem bj-cbvex

Description: Changing a bound variable (existential quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbval.denote y x x = y
bj-cbval.denote2 x y y = x
bj-cbval.maj x = y φ ψ
bj-cbval.equcomiv y = x x = y
Assertion bj-cbvex x φ y ψ

Proof

Step Hyp Ref Expression
1 bj-cbval.denote y x x = y
2 bj-cbval.denote2 x y y = x
3 bj-cbval.maj x = y φ ψ
4 bj-cbval.equcomiv y = x x = y
5 3 biimpd x = y φ ψ
6 4 5 syl y = x φ ψ
7 6 2 bj-cbveximi x φ y ψ
8 3 biimprd x = y ψ φ
9 8 1 bj-cbveximi y ψ x φ
10 7 9 impbii x φ y ψ