Metamath Proof Explorer


Theorem bj-cbveximi

Description: An equality-free general instance of one half of a precise form of bj-cbvex . (Contributed by BJ, 12-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbvalimi.maj χ φ ψ
bj-cbveximi.denote x y χ
Assertion bj-cbveximi x φ y ψ

Proof

Step Hyp Ref Expression
1 bj-cbvalimi.maj χ φ ψ
2 bj-cbveximi.denote x y χ
3 1 gen2 x y χ φ ψ
4 bj-cbvexim x y χ x y χ φ ψ x φ y ψ
5 2 3 4 mp2 x φ y ψ