Metamath Proof Explorer


Theorem bj-cbveximi

Description: An equality-free general instance of one half of a precise form of bj-cbvex . (Contributed by BJ, 12-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbvalimi.maj
|- ( ch -> ( ph -> ps ) )
bj-cbveximi.denote
|- A. x E. y ch
Assertion bj-cbveximi
|- ( E. x ph -> E. y ps )

Proof

Step Hyp Ref Expression
1 bj-cbvalimi.maj
 |-  ( ch -> ( ph -> ps ) )
2 bj-cbveximi.denote
 |-  A. x E. y ch
3 1 gen2
 |-  A. x A. y ( ch -> ( ph -> ps ) )
4 bj-cbvexim
 |-  ( A. x E. y ch -> ( A. x A. y ( ch -> ( ph -> ps ) ) -> ( E. x ph -> E. y ps ) ) )
5 2 3 4 mp2
 |-  ( E. x ph -> E. y ps )