Metamath Proof Explorer


Theorem bj-cbval

Description: Changing a bound variable (universal quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbval.denote y x x = y
bj-cbval.denote2 x y y = x
bj-cbval.maj x = y φ ψ
bj-cbval.equcomiv y = x x = y
Assertion bj-cbval x φ y ψ

Proof

Step Hyp Ref Expression
1 bj-cbval.denote y x x = y
2 bj-cbval.denote2 x y y = x
3 bj-cbval.maj x = y φ ψ
4 bj-cbval.equcomiv y = x x = y
5 3 biimpd x = y φ ψ
6 5 1 bj-cbvalimi x φ y ψ
7 3 biimprd x = y ψ φ
8 4 7 syl y = x ψ φ
9 8 2 bj-cbvalimi y ψ x φ
10 6 9 impbii x φ y ψ