Metamath Proof Explorer


Theorem bj-cbvalimi

Description: An equality-free general instance of one half of a precise form of bj-cbval . (Contributed by BJ, 12-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbvalimi.maj χ φ ψ
bj-cbvalimi.denote y x χ
Assertion bj-cbvalimi x φ y ψ

Proof

Step Hyp Ref Expression
1 bj-cbvalimi.maj χ φ ψ
2 bj-cbvalimi.denote y x χ
3 1 gen2 y x χ φ ψ
4 bj-cbvalim y x χ y x χ φ ψ x φ y ψ
5 2 3 4 mp2 x φ y ψ