Metamath Proof Explorer


Theorem bj-cbvalimi

Description: An equality-free general instance of one half of a precise form of bj-cbval . (Contributed by BJ, 12-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbvalimi.maj
|- ( ch -> ( ph -> ps ) )
bj-cbvalimi.denote
|- A. y E. x ch
Assertion bj-cbvalimi
|- ( A. x ph -> A. y ps )

Proof

Step Hyp Ref Expression
1 bj-cbvalimi.maj
 |-  ( ch -> ( ph -> ps ) )
2 bj-cbvalimi.denote
 |-  A. y E. x ch
3 1 gen2
 |-  A. y A. x ( ch -> ( ph -> ps ) )
4 bj-cbvalim
 |-  ( A. y E. x ch -> ( A. y A. x ( ch -> ( ph -> ps ) ) -> ( A. x ph -> A. y ps ) ) )
5 2 3 4 mp2
 |-  ( A. x ph -> A. y ps )