Metamath Proof Explorer


Theorem bj-ceqsal

Description: Remove from ceqsal dependency on ax-ext (and on df-cleq , df-v , df-clab , df-sb ). (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsal.1 x ψ
bj-ceqsal.2 A V
bj-ceqsal.3 x = A φ ψ
Assertion bj-ceqsal x x = A φ ψ

Proof

Step Hyp Ref Expression
1 bj-ceqsal.1 x ψ
2 bj-ceqsal.2 A V
3 bj-ceqsal.3 x = A φ ψ
4 1 3 bj-ceqsalgv A V x x = A φ ψ
5 2 4 ax-mp x x = A φ ψ