Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Classes without the axiom of extensionality
bj-ceqsal
Metamath Proof Explorer
Description: Remove from ceqsal dependency on ax-ext (and on df-cleq , df-v ,
df-clab , df-sb ). (Contributed by BJ , 12-Oct-2019)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
bj-ceqsal.1
⊢ Ⅎ x ψ
bj-ceqsal.2
⊢ A ∈ V
bj-ceqsal.3
⊢ x = A → φ ↔ ψ
Assertion
bj-ceqsal
⊢ ∀ x x = A → φ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
bj-ceqsal.1
⊢ Ⅎ x ψ
2
bj-ceqsal.2
⊢ A ∈ V
3
bj-ceqsal.3
⊢ x = A → φ ↔ ψ
4
1 3
bj-ceqsalgv
⊢ A ∈ V → ∀ x x = A → φ ↔ ψ
5
2 4
ax-mp
⊢ ∀ x x = A → φ ↔ ψ