Metamath Proof Explorer


Theorem bj-ceqsal

Description: Remove from ceqsal dependency on ax-ext (and on df-cleq , df-v , df-clab , df-sb ). (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsal.1
|- F/ x ps
bj-ceqsal.2
|- A e. _V
bj-ceqsal.3
|- ( x = A -> ( ph <-> ps ) )
Assertion bj-ceqsal
|- ( A. x ( x = A -> ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 bj-ceqsal.1
 |-  F/ x ps
2 bj-ceqsal.2
 |-  A e. _V
3 bj-ceqsal.3
 |-  ( x = A -> ( ph <-> ps ) )
4 1 3 bj-ceqsalgv
 |-  ( A e. _V -> ( A. x ( x = A -> ph ) <-> ps ) )
5 2 4 ax-mp
 |-  ( A. x ( x = A -> ph ) <-> ps )