Metamath Proof Explorer


Theorem bj-ceqsal

Description: Remove from ceqsal dependency on ax-ext (and on df-cleq , df-v , df-clab , df-sb ). (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsal.1 𝑥 𝜓
bj-ceqsal.2 𝐴 ∈ V
bj-ceqsal.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion bj-ceqsal ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-ceqsal.1 𝑥 𝜓
2 bj-ceqsal.2 𝐴 ∈ V
3 bj-ceqsal.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 1 3 bj-ceqsalgv ( 𝐴 ∈ V → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )
5 2 4 ax-mp ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )