Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Classes without the axiom of extensionality
bj-ceqsal
Metamath Proof Explorer
Description: Remove from ceqsal dependency on ax-ext (and on df-cleq , df-v ,
df-clab , df-sb ). (Contributed by BJ , 12-Oct-2019)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
bj-ceqsal.1
⊢ Ⅎ 𝑥 𝜓
bj-ceqsal.2
⊢ 𝐴 ∈ V
bj-ceqsal.3
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
Assertion
bj-ceqsal
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
bj-ceqsal.1
⊢ Ⅎ 𝑥 𝜓
2
bj-ceqsal.2
⊢ 𝐴 ∈ V
3
bj-ceqsal.3
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
4
1 3
bj-ceqsalgv
⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) )
5
2 4
ax-mp
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 )