Metamath Proof Explorer


Theorem bj-ceqsalv

Description: Remove from ceqsalv dependency on ax-ext (and on df-cleq , df-v , df-clab , df-sb ). (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsalv.1 𝐴 ∈ V
bj-ceqsalv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion bj-ceqsalv ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-ceqsalv.1 𝐴 ∈ V
2 bj-ceqsalv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 nfv 𝑥 𝜓
4 3 1 2 bj-ceqsal ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )