Metamath Proof Explorer


Theorem bj-ceqsalv

Description: Remove from ceqsalv dependency on ax-ext (and on df-cleq , df-v , df-clab , df-sb ). (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsalv.1
|- A e. _V
bj-ceqsalv.2
|- ( x = A -> ( ph <-> ps ) )
Assertion bj-ceqsalv
|- ( A. x ( x = A -> ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 bj-ceqsalv.1
 |-  A e. _V
2 bj-ceqsalv.2
 |-  ( x = A -> ( ph <-> ps ) )
3 nfv
 |-  F/ x ps
4 3 1 2 bj-ceqsal
 |-  ( A. x ( x = A -> ph ) <-> ps )