Metamath Proof Explorer


Theorem bj-ceqsalgv

Description: Version of bj-ceqsalg with a disjoint variable condition on x , V , removing dependency on df-sb and df-clab . Prefer its use over bj-ceqsalg when sufficient (in particular when V is substituted for _V ). (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsalgv.1 𝑥 𝜓
bj-ceqsalgv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion bj-ceqsalgv ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-ceqsalgv.1 𝑥 𝜓
2 bj-ceqsalgv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 elissetv ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
4 1 2 bj-ceqsalg0 ( ∃ 𝑥 𝑥 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )
5 3 4 syl ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )