Metamath Proof Explorer


Theorem bj-ceqsalg0

Description: The FOL content of ceqsalg . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsalg0.1 𝑥 𝜓
bj-ceqsalg0.2 ( 𝜒 → ( 𝜑𝜓 ) )
Assertion bj-ceqsalg0 ( ∃ 𝑥 𝜒 → ( ∀ 𝑥 ( 𝜒𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-ceqsalg0.1 𝑥 𝜓
2 bj-ceqsalg0.2 ( 𝜒 → ( 𝜑𝜓 ) )
3 2 ax-gen 𝑥 ( 𝜒 → ( 𝜑𝜓 ) )
4 bj-ceqsalt0 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜒 ) → ( ∀ 𝑥 ( 𝜒𝜑 ) ↔ 𝜓 ) )
5 1 3 4 mp3an12 ( ∃ 𝑥 𝜒 → ( ∀ 𝑥 ( 𝜒𝜑 ) ↔ 𝜓 ) )