Metamath Proof Explorer
Description: The FOL content of ceqsalg . (Contributed by BJ, 12-Oct-2019)
(Proof modification is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bj-ceqsalg0.1 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
bj-ceqsalg0.2 |
⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
bj-ceqsalg0 |
⊢ ( ∃ 𝑥 𝜒 → ( ∀ 𝑥 ( 𝜒 → 𝜑 ) ↔ 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bj-ceqsalg0.1 |
⊢ Ⅎ 𝑥 𝜓 |
2 |
|
bj-ceqsalg0.2 |
⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
2
|
ax-gen |
⊢ ∀ 𝑥 ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
bj-ceqsalt0 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∃ 𝑥 𝜒 ) → ( ∀ 𝑥 ( 𝜒 → 𝜑 ) ↔ 𝜓 ) ) |
5 |
1 3 4
|
mp3an12 |
⊢ ( ∃ 𝑥 𝜒 → ( ∀ 𝑥 ( 𝜒 → 𝜑 ) ↔ 𝜓 ) ) |