Metamath Proof Explorer


Theorem bj-ceqsalg0

Description: The FOL content of ceqsalg . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsalg0.1 xψ
bj-ceqsalg0.2 χφψ
Assertion bj-ceqsalg0 xχxχφψ

Proof

Step Hyp Ref Expression
1 bj-ceqsalg0.1 xψ
2 bj-ceqsalg0.2 χφψ
3 2 ax-gen xχφψ
4 bj-ceqsalt0 xψxχφψxχxχφψ
5 1 3 4 mp3an12 xχxχφψ