Metamath Proof Explorer


Theorem bj-ceqsalg0

Description: The FOL content of ceqsalg . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsalg0.1
|- F/ x ps
bj-ceqsalg0.2
|- ( ch -> ( ph <-> ps ) )
Assertion bj-ceqsalg0
|- ( E. x ch -> ( A. x ( ch -> ph ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 bj-ceqsalg0.1
 |-  F/ x ps
2 bj-ceqsalg0.2
 |-  ( ch -> ( ph <-> ps ) )
3 2 ax-gen
 |-  A. x ( ch -> ( ph <-> ps ) )
4 bj-ceqsalt0
 |-  ( ( F/ x ps /\ A. x ( ch -> ( ph <-> ps ) ) /\ E. x ch ) -> ( A. x ( ch -> ph ) <-> ps ) )
5 1 3 4 mp3an12
 |-  ( E. x ch -> ( A. x ( ch -> ph ) <-> ps ) )