| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|- ( ( F/ x ps /\ A. x ( th -> ( ph <-> ps ) ) /\ E. x th ) -> E. x th ) |
| 2 |
|
biimp |
|- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
| 3 |
2
|
imim3i |
|- ( ( th -> ( ph <-> ps ) ) -> ( ( th -> ph ) -> ( th -> ps ) ) ) |
| 4 |
3
|
al2imi |
|- ( A. x ( th -> ( ph <-> ps ) ) -> ( A. x ( th -> ph ) -> A. x ( th -> ps ) ) ) |
| 5 |
4
|
3ad2ant2 |
|- ( ( F/ x ps /\ A. x ( th -> ( ph <-> ps ) ) /\ E. x th ) -> ( A. x ( th -> ph ) -> A. x ( th -> ps ) ) ) |
| 6 |
|
19.23t |
|- ( F/ x ps -> ( A. x ( th -> ps ) <-> ( E. x th -> ps ) ) ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( F/ x ps /\ A. x ( th -> ( ph <-> ps ) ) /\ E. x th ) -> ( A. x ( th -> ps ) <-> ( E. x th -> ps ) ) ) |
| 8 |
5 7
|
sylibd |
|- ( ( F/ x ps /\ A. x ( th -> ( ph <-> ps ) ) /\ E. x th ) -> ( A. x ( th -> ph ) -> ( E. x th -> ps ) ) ) |
| 9 |
1 8
|
mpid |
|- ( ( F/ x ps /\ A. x ( th -> ( ph <-> ps ) ) /\ E. x th ) -> ( A. x ( th -> ph ) -> ps ) ) |
| 10 |
|
biimpr |
|- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
| 11 |
10
|
imim2i |
|- ( ( th -> ( ph <-> ps ) ) -> ( th -> ( ps -> ph ) ) ) |
| 12 |
11
|
com23 |
|- ( ( th -> ( ph <-> ps ) ) -> ( ps -> ( th -> ph ) ) ) |
| 13 |
12
|
alimi |
|- ( A. x ( th -> ( ph <-> ps ) ) -> A. x ( ps -> ( th -> ph ) ) ) |
| 14 |
13
|
3ad2ant2 |
|- ( ( F/ x ps /\ A. x ( th -> ( ph <-> ps ) ) /\ E. x th ) -> A. x ( ps -> ( th -> ph ) ) ) |
| 15 |
|
19.21t |
|- ( F/ x ps -> ( A. x ( ps -> ( th -> ph ) ) <-> ( ps -> A. x ( th -> ph ) ) ) ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( F/ x ps /\ A. x ( th -> ( ph <-> ps ) ) /\ E. x th ) -> ( A. x ( ps -> ( th -> ph ) ) <-> ( ps -> A. x ( th -> ph ) ) ) ) |
| 17 |
14 16
|
mpbid |
|- ( ( F/ x ps /\ A. x ( th -> ( ph <-> ps ) ) /\ E. x th ) -> ( ps -> A. x ( th -> ph ) ) ) |
| 18 |
9 17
|
impbid |
|- ( ( F/ x ps /\ A. x ( th -> ( ph <-> ps ) ) /\ E. x th ) -> ( A. x ( th -> ph ) <-> ps ) ) |