Metamath Proof Explorer


Theorem bj-ceqsalt0

Description: The FOL content of ceqsalt . Lemma for bj-ceqsalt and bj-ceqsaltv . (Contributed by BJ, 26-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ceqsalt0 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 simp3 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ∃ 𝑥 𝜃 )
2 biimp ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
3 2 imim3i ( ( 𝜃 → ( 𝜑𝜓 ) ) → ( ( 𝜃𝜑 ) → ( 𝜃𝜓 ) ) )
4 3 al2imi ( ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) → ( ∀ 𝑥 ( 𝜃𝜑 ) → ∀ 𝑥 ( 𝜃𝜓 ) ) )
5 4 3ad2ant2 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃𝜑 ) → ∀ 𝑥 ( 𝜃𝜓 ) ) )
6 19.23t ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜃𝜓 ) ↔ ( ∃ 𝑥 𝜃𝜓 ) ) )
7 6 3ad2ant1 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃𝜓 ) ↔ ( ∃ 𝑥 𝜃𝜓 ) ) )
8 5 7 sylibd ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃𝜑 ) → ( ∃ 𝑥 𝜃𝜓 ) ) )
9 1 8 mpid ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃𝜑 ) → 𝜓 ) )
10 biimpr ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )
11 10 imim2i ( ( 𝜃 → ( 𝜑𝜓 ) ) → ( 𝜃 → ( 𝜓𝜑 ) ) )
12 11 com23 ( ( 𝜃 → ( 𝜑𝜓 ) ) → ( 𝜓 → ( 𝜃𝜑 ) ) )
13 12 alimi ( ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ( 𝜃𝜑 ) ) )
14 13 3ad2ant2 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ∀ 𝑥 ( 𝜓 → ( 𝜃𝜑 ) ) )
15 19.21t ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜓 → ( 𝜃𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝜃𝜑 ) ) ) )
16 15 3ad2ant1 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜓 → ( 𝜃𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝜃𝜑 ) ) ) )
17 14 16 mpbid ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( 𝜓 → ∀ 𝑥 ( 𝜃𝜑 ) ) )
18 9 17 impbid ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃𝜑 ) ↔ 𝜓 ) )