Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ∃ 𝑥 𝜃 ) |
2 |
|
biimp |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
3 |
2
|
imim3i |
⊢ ( ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝜃 → 𝜑 ) → ( 𝜃 → 𝜓 ) ) ) |
4 |
3
|
al2imi |
⊢ ( ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝜃 → 𝜑 ) → ∀ 𝑥 ( 𝜃 → 𝜓 ) ) ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃 → 𝜑 ) → ∀ 𝑥 ( 𝜃 → 𝜓 ) ) ) |
6 |
|
19.23t |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜃 → 𝜓 ) ↔ ( ∃ 𝑥 𝜃 → 𝜓 ) ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃 → 𝜓 ) ↔ ( ∃ 𝑥 𝜃 → 𝜓 ) ) ) |
8 |
5 7
|
sylibd |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃 → 𝜑 ) → ( ∃ 𝑥 𝜃 → 𝜓 ) ) ) |
9 |
1 8
|
mpid |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃 → 𝜑 ) → 𝜓 ) ) |
10 |
|
biimpr |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) |
11 |
10
|
imim2i |
⊢ ( ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜃 → ( 𝜓 → 𝜑 ) ) ) |
12 |
11
|
com23 |
⊢ ( ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜓 → ( 𝜃 → 𝜑 ) ) ) |
13 |
12
|
alimi |
⊢ ( ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ( 𝜃 → 𝜑 ) ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ∀ 𝑥 ( 𝜓 → ( 𝜃 → 𝜑 ) ) ) |
15 |
|
19.21t |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜓 → ( 𝜃 → 𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝜃 → 𝜑 ) ) ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜓 → ( 𝜃 → 𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝜃 → 𝜑 ) ) ) ) |
17 |
14 16
|
mpbid |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( 𝜓 → ∀ 𝑥 ( 𝜃 → 𝜑 ) ) ) |
18 |
9 17
|
impbid |
⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜃 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∃ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃 → 𝜑 ) ↔ 𝜓 ) ) |