Metamath Proof Explorer


Theorem bj-ceqsalt1

Description: The FOL content of ceqsalt . Lemma for bj-ceqsalt and bj-ceqsaltv . TODO: consider removing if it does not add anything to bj-ceqsalt0 . (Contributed by BJ, 26-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-ceqsalt1.1 ( 𝜃 → ∃ 𝑥 𝜒 )
Assertion bj-ceqsalt1 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ 𝜃 ) → ( ∀ 𝑥 ( 𝜒𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-ceqsalt1.1 ( 𝜃 → ∃ 𝑥 𝜒 )
2 1 3ad2ant3 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ 𝜃 ) → ∃ 𝑥 𝜒 )
3 biimp ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
4 3 imim3i ( ( 𝜒 → ( 𝜑𝜓 ) ) → ( ( 𝜒𝜑 ) → ( 𝜒𝜓 ) ) )
5 4 al2imi ( ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) → ( ∀ 𝑥 ( 𝜒𝜑 ) → ∀ 𝑥 ( 𝜒𝜓 ) ) )
6 5 3ad2ant2 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ 𝜃 ) → ( ∀ 𝑥 ( 𝜒𝜑 ) → ∀ 𝑥 ( 𝜒𝜓 ) ) )
7 19.23t ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜒𝜓 ) ↔ ( ∃ 𝑥 𝜒𝜓 ) ) )
8 7 3ad2ant1 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ 𝜃 ) → ( ∀ 𝑥 ( 𝜒𝜓 ) ↔ ( ∃ 𝑥 𝜒𝜓 ) ) )
9 6 8 sylibd ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ 𝜃 ) → ( ∀ 𝑥 ( 𝜒𝜑 ) → ( ∃ 𝑥 𝜒𝜓 ) ) )
10 2 9 mpid ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ 𝜃 ) → ( ∀ 𝑥 ( 𝜒𝜑 ) → 𝜓 ) )
11 biimpr ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )
12 11 imim2i ( ( 𝜒 → ( 𝜑𝜓 ) ) → ( 𝜒 → ( 𝜓𝜑 ) ) )
13 12 com23 ( ( 𝜒 → ( 𝜑𝜓 ) ) → ( 𝜓 → ( 𝜒𝜑 ) ) )
14 13 alimi ( ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ( 𝜒𝜑 ) ) )
15 14 3ad2ant2 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ 𝜃 ) → ∀ 𝑥 ( 𝜓 → ( 𝜒𝜑 ) ) )
16 19.21t ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜓 → ( 𝜒𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝜒𝜑 ) ) ) )
17 16 3ad2ant1 ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ 𝜃 ) → ( ∀ 𝑥 ( 𝜓 → ( 𝜒𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝜒𝜑 ) ) ) )
18 15 17 mpbid ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ 𝜃 ) → ( 𝜓 → ∀ 𝑥 ( 𝜒𝜑 ) ) )
19 10 18 impbid ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝜒 → ( 𝜑𝜓 ) ) ∧ 𝜃 ) → ( ∀ 𝑥 ( 𝜒𝜑 ) ↔ 𝜓 ) )