Metamath Proof Explorer


Theorem bj-ceqsaltv

Description: Version of bj-ceqsalt with a disjoint variable condition on x , V , removing dependency on df-sb and df-clab . Prefer its use over bj-ceqsalt when sufficient (in particular when V is substituted for _V ). (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ceqsaltv
|- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 elissetv
 |-  ( A e. V -> E. x x = A )
2 1 3anim3i
 |-  ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ E. x x = A ) )
3 bj-ceqsalt0
 |-  ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ E. x x = A ) -> ( A. x ( x = A -> ph ) <-> ps ) )
4 2 3 syl
 |-  ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) <-> ps ) )