Metamath Proof Explorer


Theorem bj-ceqsalg

Description: Remove from ceqsalg dependency on ax-ext (and on df-cleq and df-v ). See also bj-ceqsalgv . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsalg.1
|- F/ x ps
bj-ceqsalg.2
|- ( x = A -> ( ph <-> ps ) )
Assertion bj-ceqsalg
|- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 bj-ceqsalg.1
 |-  F/ x ps
2 bj-ceqsalg.2
 |-  ( x = A -> ( ph <-> ps ) )
3 bj-elisset
 |-  ( A e. V -> E. x x = A )
4 1 2 bj-ceqsalg0
 |-  ( E. x x = A -> ( A. x ( x = A -> ph ) <-> ps ) )
5 3 4 syl
 |-  ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) )