Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Classes without the axiom of extensionality
bj-ceqsalg
Metamath Proof Explorer
Description: Remove from ceqsalg dependency on ax-ext (and on df-cleq and
df-v ). See also bj-ceqsalgv . (Contributed by BJ , 12-Oct-2019)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
bj-ceqsalg.1
⊢ Ⅎ x ψ
bj-ceqsalg.2
⊢ x = A → φ ↔ ψ
Assertion
bj-ceqsalg
⊢ A ∈ V → ∀ x x = A → φ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
bj-ceqsalg.1
⊢ Ⅎ x ψ
2
bj-ceqsalg.2
⊢ x = A → φ ↔ ψ
3
bj-elisset
⊢ A ∈ V → ∃ x x = A
4
1 2
bj-ceqsalg0
⊢ ∃ x x = A → ∀ x x = A → φ ↔ ψ
5
3 4
syl
⊢ A ∈ V → ∀ x x = A → φ ↔ ψ