Metamath Proof Explorer


Theorem bj-ceqsalg

Description: Remove from ceqsalg dependency on ax-ext (and on df-cleq and df-v ). See also bj-ceqsalgv . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsalg.1 xψ
bj-ceqsalg.2 x=Aφψ
Assertion bj-ceqsalg AVxx=Aφψ

Proof

Step Hyp Ref Expression
1 bj-ceqsalg.1 xψ
2 bj-ceqsalg.2 x=Aφψ
3 elisset AVxx=A
4 1 2 bj-ceqsalg0 xx=Axx=Aφψ
5 3 4 syl AVxx=Aφψ