Metamath Proof Explorer


Theorem bj-ceqsalg

Description: Remove from ceqsalg dependency on ax-ext (and on df-cleq and df-v ). See also bj-ceqsalgv . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsalg.1 𝑥 𝜓
bj-ceqsalg.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion bj-ceqsalg ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-ceqsalg.1 𝑥 𝜓
2 bj-ceqsalg.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 bj-elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
4 1 2 bj-ceqsalg0 ( ∃ 𝑥 𝑥 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )
5 3 4 syl ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )