Metamath Proof Explorer


Theorem bj-ceqsalgv

Description: Version of bj-ceqsalg with a disjoint variable condition on x , V , removing dependency on df-sb and df-clab . Prefer its use over bj-ceqsalg when sufficient (in particular when V is substituted for _V ). (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ceqsalgv.1
|- F/ x ps
bj-ceqsalgv.2
|- ( x = A -> ( ph <-> ps ) )
Assertion bj-ceqsalgv
|- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 bj-ceqsalgv.1
 |-  F/ x ps
2 bj-ceqsalgv.2
 |-  ( x = A -> ( ph <-> ps ) )
3 elissetv
 |-  ( A e. V -> E. x x = A )
4 1 2 bj-ceqsalg0
 |-  ( E. x x = A -> ( A. x ( x = A -> ph ) <-> ps ) )
5 3 4 syl
 |-  ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) )