Metamath Proof Explorer


Theorem bj-ceqsalgvALT

Description: Alternate proof of bj-ceqsalgv . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses bj-ceqsalgv.1
|- F/ x ps
bj-ceqsalgv.2
|- ( x = A -> ( ph <-> ps ) )
Assertion bj-ceqsalgvALT
|- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) )

Proof

Step Hyp Ref Expression
1 bj-ceqsalgv.1
 |-  F/ x ps
2 bj-ceqsalgv.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 ax-gen
 |-  A. x ( x = A -> ( ph <-> ps ) )
4 bj-ceqsaltv
 |-  ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) <-> ps ) )
5 1 3 4 mp3an12
 |-  ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) )