Metamath Proof Explorer


Theorem bj-ceqsalgvALT

Description: Alternate proof of bj-ceqsalgv . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses bj-ceqsalgv.1 𝑥 𝜓
bj-ceqsalgv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion bj-ceqsalgvALT ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-ceqsalgv.1 𝑥 𝜓
2 bj-ceqsalgv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 2 ax-gen 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 bj-ceqsaltv ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ 𝐴𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )
5 1 3 4 mp3an12 ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )