Metamath Proof Explorer


Theorem bj-ceqsalgALT

Description: Alternate proof of bj-ceqsalg . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses bj-ceqsalg.1 xψ
bj-ceqsalg.2 x=Aφψ
Assertion bj-ceqsalgALT AVxx=Aφψ

Proof

Step Hyp Ref Expression
1 bj-ceqsalg.1 xψ
2 bj-ceqsalg.2 x=Aφψ
3 2 ax-gen xx=Aφψ
4 bj-ceqsalt xψxx=AφψAVxx=Aφψ
5 1 3 4 mp3an12 AVxx=Aφψ