Metamath Proof Explorer


Theorem bj-dfnnf2

Description: Alternate definition of df-bj-nnf using only primitive symbols ( -> , -. , A. ) in each conjunct. (Contributed by BJ, 20-Aug-2023)

Ref Expression
Assertion bj-dfnnf2 Ⅎ'xφφxφ¬φx¬φ

Proof

Step Hyp Ref Expression
1 df-bj-nnf Ⅎ'xφxφφφxφ
2 eximal xφφ¬φx¬φ
3 2 anbi2ci xφφφxφφxφ¬φx¬φ
4 1 3 bitri Ⅎ'xφφxφ¬φx¬φ