Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Extended real and complex numbers, real and complex projective lines
Identity relation (complements)
bj-elid5
Next ⟩
bj-elid6
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-elid5
Description:
Characterization of the elements of
_I
.
(Contributed by
BJ
, 22-Jun-2019)
Ref
Expression
Assertion
bj-elid5
⊢
A
∈
I
↔
A
∈
V
×
V
∧
1
st
⁡
A
=
2
nd
⁡
A
Proof
Step
Hyp
Ref
Expression
1
reli
⊢
Rel
⁡
I
2
df-rel
⊢
Rel
⁡
I
↔
I
⊆
V
×
V
3
1
2
mpbi
⊢
I
⊆
V
×
V
4
3
sseli
⊢
A
∈
I
→
A
∈
V
×
V
5
bj-elid4
⊢
A
∈
V
×
V
→
A
∈
I
↔
1
st
⁡
A
=
2
nd
⁡
A
6
4
5
biadanii
⊢
A
∈
I
↔
A
∈
V
×
V
∧
1
st
⁡
A
=
2
nd
⁡
A