Metamath Proof Explorer


Theorem bj-elid5

Description: Characterization of the elements of _I . (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-elid5 ( 𝐴 ∈ I ↔ ( 𝐴 ∈ ( V × V ) ∧ ( 1st𝐴 ) = ( 2nd𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 reli Rel I
2 df-rel ( Rel I ↔ I ⊆ ( V × V ) )
3 1 2 mpbi I ⊆ ( V × V )
4 3 sseli ( 𝐴 ∈ I → 𝐴 ∈ ( V × V ) )
5 bj-elid4 ( 𝐴 ∈ ( V × V ) → ( 𝐴 ∈ I ↔ ( 1st𝐴 ) = ( 2nd𝐴 ) ) )
6 4 5 biadanii ( 𝐴 ∈ I ↔ ( 𝐴 ∈ ( V × V ) ∧ ( 1st𝐴 ) = ( 2nd𝐴 ) ) )