Metamath Proof Explorer


Theorem bj-eqs

Description: A lemma for substitutions, proved from Tarski's FOL. The version without DV ( x , y ) is true but requires ax-13 . The disjoint variable condition DV ( x , ph ) is necessary for both directions: consider substituting x = z for ph . (Contributed by BJ, 25-May-2021)

Ref Expression
Assertion bj-eqs φxx=yφ

Proof

Step Hyp Ref Expression
1 ax-1 φx=yφ
2 1 alrimiv φxx=yφ
3 exim xx=yφxx=yxφ
4 ax6ev xx=y
5 pm2.27 xx=yxx=yxφxφ
6 4 5 ax-mp xx=yxφxφ
7 ax5e xφφ
8 3 6 7 3syl xx=yφφ
9 2 8 impbii φxx=yφ