Description: A lemma for substitutions, proved from Tarski's FOL. The version without DV ( x , y ) is true but requires ax-13 . The disjoint variable condition DV ( x , ph ) is necessary for both directions: consider substituting x = z for ph . (Contributed by BJ, 25-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-eqs | |- ( ph <-> A. x ( x = y -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 | |- ( ph -> ( x = y -> ph ) ) |
|
2 | 1 | alrimiv | |- ( ph -> A. x ( x = y -> ph ) ) |
3 | exim | |- ( A. x ( x = y -> ph ) -> ( E. x x = y -> E. x ph ) ) |
|
4 | ax6ev | |- E. x x = y |
|
5 | pm2.27 | |- ( E. x x = y -> ( ( E. x x = y -> E. x ph ) -> E. x ph ) ) |
|
6 | 4 5 | ax-mp | |- ( ( E. x x = y -> E. x ph ) -> E. x ph ) |
7 | ax5e | |- ( E. x ph -> ph ) |
|
8 | 3 6 7 | 3syl | |- ( A. x ( x = y -> ph ) -> ph ) |
9 | 2 8 | impbii | |- ( ph <-> A. x ( x = y -> ph ) ) |