Metamath Proof Explorer


Theorem bj-eqs

Description: A lemma for substitutions, proved from Tarski's FOL. The version without DV ( x , y ) is true but requires ax-13 . The disjoint variable condition DV ( x , ph ) is necessary for both directions: consider substituting x = z for ph . (Contributed by BJ, 25-May-2021)

Ref Expression
Assertion bj-eqs
|- ( ph <-> A. x ( x = y -> ph ) )

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( ph -> ( x = y -> ph ) )
2 1 alrimiv
 |-  ( ph -> A. x ( x = y -> ph ) )
3 exim
 |-  ( A. x ( x = y -> ph ) -> ( E. x x = y -> E. x ph ) )
4 ax6ev
 |-  E. x x = y
5 pm2.27
 |-  ( E. x x = y -> ( ( E. x x = y -> E. x ph ) -> E. x ph ) )
6 4 5 ax-mp
 |-  ( ( E. x x = y -> E. x ph ) -> E. x ph )
7 ax5e
 |-  ( E. x ph -> ph )
8 3 6 7 3syl
 |-  ( A. x ( x = y -> ph ) -> ph )
9 2 8 impbii
 |-  ( ph <-> A. x ( x = y -> ph ) )