Metamath Proof Explorer


Theorem bj-equsal

Description: Shorter proof of equsal . (Contributed by BJ, 30-Sep-2018) Proof modification is discouraged to avoid using equsal , but "min */exc equsal" is ok. (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-equsal.1 x ψ
bj-equsal.2 x = y φ ψ
Assertion bj-equsal x x = y φ ψ

Proof

Step Hyp Ref Expression
1 bj-equsal.1 x ψ
2 bj-equsal.2 x = y φ ψ
3 2 biimpd x = y φ ψ
4 1 3 bj-equsal1 x x = y φ ψ
5 2 biimprd x = y ψ φ
6 1 5 bj-equsal2 ψ x x = y φ
7 4 6 impbii x x = y φ ψ