Description: Shorter proof of equsal . (Contributed by BJ, 30-Sep-2018) Proof modification is discouraged to avoid using equsal , but "min */exc equsal" is ok. (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-equsal.1 | |- F/ x ps |
|
bj-equsal.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | bj-equsal | |- ( A. x ( x = y -> ph ) <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsal.1 | |- F/ x ps |
|
2 | bj-equsal.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
3 | 2 | biimpd | |- ( x = y -> ( ph -> ps ) ) |
4 | 1 3 | bj-equsal1 | |- ( A. x ( x = y -> ph ) -> ps ) |
5 | 2 | biimprd | |- ( x = y -> ( ps -> ph ) ) |
6 | 1 5 | bj-equsal2 | |- ( ps -> A. x ( x = y -> ph ) ) |
7 | 4 6 | impbii | |- ( A. x ( x = y -> ph ) <-> ps ) |