Metamath Proof Explorer


Theorem bj-equsal

Description: Shorter proof of equsal . (Contributed by BJ, 30-Sep-2018) Proof modification is discouraged to avoid using equsal , but "min */exc equsal" is ok. (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-equsal.1
|- F/ x ps
bj-equsal.2
|- ( x = y -> ( ph <-> ps ) )
Assertion bj-equsal
|- ( A. x ( x = y -> ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 bj-equsal.1
 |-  F/ x ps
2 bj-equsal.2
 |-  ( x = y -> ( ph <-> ps ) )
3 2 biimpd
 |-  ( x = y -> ( ph -> ps ) )
4 1 3 bj-equsal1
 |-  ( A. x ( x = y -> ph ) -> ps )
5 2 biimprd
 |-  ( x = y -> ( ps -> ph ) )
6 1 5 bj-equsal2
 |-  ( ps -> A. x ( x = y -> ph ) )
7 4 6 impbii
 |-  ( A. x ( x = y -> ph ) <-> ps )