Description: One direction of equsal . (Contributed by BJ, 30-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-equsal1.1 | |- F/ x ps |
|
| bj-equsal1.2 | |- ( x = y -> ( ph -> ps ) ) |
||
| Assertion | bj-equsal1 | |- ( A. x ( x = y -> ph ) -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-equsal1.1 | |- F/ x ps |
|
| 2 | bj-equsal1.2 | |- ( x = y -> ( ph -> ps ) ) |
|
| 3 | 2 | a2i | |- ( ( x = y -> ph ) -> ( x = y -> ps ) ) |
| 4 | 3 | alimi | |- ( A. x ( x = y -> ph ) -> A. x ( x = y -> ps ) ) |
| 5 | 1 | bj-equsal1ti | |- ( A. x ( x = y -> ps ) <-> ps ) |
| 6 | 4 5 | sylib | |- ( A. x ( x = y -> ph ) -> ps ) |