Metamath Proof Explorer


Theorem bj-equsal1

Description: One direction of equsal . (Contributed by BJ, 30-Sep-2018)

Ref Expression
Hypotheses bj-equsal1.1
|- F/ x ps
bj-equsal1.2
|- ( x = y -> ( ph -> ps ) )
Assertion bj-equsal1
|- ( A. x ( x = y -> ph ) -> ps )

Proof

Step Hyp Ref Expression
1 bj-equsal1.1
 |-  F/ x ps
2 bj-equsal1.2
 |-  ( x = y -> ( ph -> ps ) )
3 2 a2i
 |-  ( ( x = y -> ph ) -> ( x = y -> ps ) )
4 3 alimi
 |-  ( A. x ( x = y -> ph ) -> A. x ( x = y -> ps ) )
5 1 bj-equsal1ti
 |-  ( A. x ( x = y -> ps ) <-> ps )
6 4 5 sylib
 |-  ( A. x ( x = y -> ph ) -> ps )