Metamath Proof Explorer


Theorem bj-equsal1ti

Description: Inference associated with bj-equsal1t . (Contributed by BJ, 30-Sep-2018)

Ref Expression
Hypothesis bj-equsal1ti.1
|- F/ x ph
Assertion bj-equsal1ti
|- ( A. x ( x = y -> ph ) <-> ph )

Proof

Step Hyp Ref Expression
1 bj-equsal1ti.1
 |-  F/ x ph
2 bj-equsal1t
 |-  ( F/ x ph -> ( A. x ( x = y -> ph ) <-> ph ) )
3 1 2 ax-mp
 |-  ( A. x ( x = y -> ph ) <-> ph )