Metamath Proof Explorer


Theorem bj-equsal1t

Description: Duplication of wl-equsal1t , with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom is also interesting. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-equsal1t
|- ( F/ x ph -> ( A. x ( x = y -> ph ) <-> ph ) )

Proof

Step Hyp Ref Expression
1 bj-alequex
 |-  ( A. x ( x = y -> ph ) -> E. x ph )
2 19.9t
 |-  ( F/ x ph -> ( E. x ph <-> ph ) )
3 1 2 syl5ib
 |-  ( F/ x ph -> ( A. x ( x = y -> ph ) -> ph ) )
4 nf5r
 |-  ( F/ x ph -> ( ph -> A. x ph ) )
5 ala1
 |-  ( A. x ph -> A. x ( x = y -> ph ) )
6 4 5 syl6
 |-  ( F/ x ph -> ( ph -> A. x ( x = y -> ph ) ) )
7 3 6 impbid
 |-  ( F/ x ph -> ( A. x ( x = y -> ph ) <-> ph ) )