Metamath Proof Explorer


Theorem bj-equsal1t

Description: Duplication of wl-equsal1t , with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom is also interesting. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-equsal1t ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 bj-alequex ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ∃ 𝑥 𝜑 )
2 19.9t ( Ⅎ 𝑥 𝜑 → ( ∃ 𝑥 𝜑𝜑 ) )
3 1 2 syl5ib ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → 𝜑 ) )
4 nf5r ( Ⅎ 𝑥 𝜑 → ( 𝜑 → ∀ 𝑥 𝜑 ) )
5 ala1 ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
6 4 5 syl6 ( Ⅎ 𝑥 𝜑 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
7 3 6 impbid ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 ) )