Metamath Proof Explorer


Theorem bj-equsal1ti

Description: Inference associated with bj-equsal1t . (Contributed by BJ, 30-Sep-2018)

Ref Expression
Hypothesis bj-equsal1ti.1 𝑥 𝜑
Assertion bj-equsal1ti ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 )

Proof

Step Hyp Ref Expression
1 bj-equsal1ti.1 𝑥 𝜑
2 bj-equsal1t ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 ) )
3 1 2 ax-mp ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 )