Description: One direction of equsal . (Contributed by BJ, 30-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-equsal1.1 | ⊢ Ⅎ 𝑥 𝜓 | |
bj-equsal1.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) | ||
Assertion | bj-equsal1 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsal1.1 | ⊢ Ⅎ 𝑥 𝜓 | |
2 | bj-equsal1.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) | |
3 | 2 | a2i | ⊢ ( ( 𝑥 = 𝑦 → 𝜑 ) → ( 𝑥 = 𝑦 → 𝜓 ) ) |
4 | 3 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ) |
5 | 1 | bj-equsal1ti | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ↔ 𝜓 ) |
6 | 4 5 | sylib | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜓 ) |