Metamath Proof Explorer


Theorem bj-equsal1

Description: One direction of equsal . (Contributed by BJ, 30-Sep-2018)

Ref Expression
Hypotheses bj-equsal1.1 𝑥 𝜓
bj-equsal1.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion bj-equsal1 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-equsal1.1 𝑥 𝜓
2 bj-equsal1.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 2 a2i ( ( 𝑥 = 𝑦𝜑 ) → ( 𝑥 = 𝑦𝜓 ) )
4 3 alimi ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) )
5 1 bj-equsal1ti ( ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ 𝜓 )
6 4 5 sylib ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → 𝜓 )