Metamath Proof Explorer


Theorem bj-equsal2

Description: One direction of equsal . (Contributed by BJ, 30-Sep-2018)

Ref Expression
Hypotheses bj-equsal2.1 𝑥 𝜑
bj-equsal2.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion bj-equsal2 ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-equsal2.1 𝑥 𝜑
2 bj-equsal2.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 1 bj-equsal1ti ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 )
4 2 a2i ( ( 𝑥 = 𝑦𝜑 ) → ( 𝑥 = 𝑦𝜓 ) )
5 4 alimi ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) )
6 3 5 sylbir ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) )