Metamath Proof Explorer


Theorem bj-equsal2

Description: One direction of equsal . (Contributed by BJ, 30-Sep-2018)

Ref Expression
Hypotheses bj-equsal2.1
|- F/ x ph
bj-equsal2.2
|- ( x = y -> ( ph -> ps ) )
Assertion bj-equsal2
|- ( ph -> A. x ( x = y -> ps ) )

Proof

Step Hyp Ref Expression
1 bj-equsal2.1
 |-  F/ x ph
2 bj-equsal2.2
 |-  ( x = y -> ( ph -> ps ) )
3 1 bj-equsal1ti
 |-  ( A. x ( x = y -> ph ) <-> ph )
4 2 a2i
 |-  ( ( x = y -> ph ) -> ( x = y -> ps ) )
5 4 alimi
 |-  ( A. x ( x = y -> ph ) -> A. x ( x = y -> ps ) )
6 3 5 sylbir
 |-  ( ph -> A. x ( x = y -> ps ) )