Metamath Proof Explorer


Theorem bj-equsal

Description: Shorter proof of equsal . (Contributed by BJ, 30-Sep-2018) Proof modification is discouraged to avoid using equsal , but "min */exc equsal" is ok. (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-equsal.1 𝑥 𝜓
bj-equsal.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion bj-equsal ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-equsal.1 𝑥 𝜓
2 bj-equsal.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 2 biimpd ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 1 3 bj-equsal1 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → 𝜓 )
5 2 biimprd ( 𝑥 = 𝑦 → ( 𝜓𝜑 ) )
6 1 5 bj-equsal2 ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
7 4 6 impbii ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜓 )