Metamath Proof Explorer


Theorem bj-alequex

Description: A fol lemma. See alequexv for a version with a disjoint variable condition requiring fewer axioms. Can be used to reduce the proof of spimt from 133 to 112 bytes. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-alequex
|- ( A. x ( x = y -> ph ) -> E. x ph )

Proof

Step Hyp Ref Expression
1 ax6e
 |-  E. x x = y
2 exim
 |-  ( A. x ( x = y -> ph ) -> ( E. x x = y -> E. x ph ) )
3 1 2 mpi
 |-  ( A. x ( x = y -> ph ) -> E. x ph )