Description: A step in the proof of spimt . (Contributed by BJ, 2-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-spimt2 | |- ( A. x ( x = y -> ( ph -> ps ) ) -> ( ( E. x ps -> ps ) -> ( A. x ph -> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-alequex | |- ( A. x ( x = y -> ( ph -> ps ) ) -> E. x ( ph -> ps ) ) |
|
| 2 | 19.35 | |- ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) ) |
|
| 3 | 1 2 | sylib | |- ( A. x ( x = y -> ( ph -> ps ) ) -> ( A. x ph -> E. x ps ) ) |
| 4 | 3 | imim1d | |- ( A. x ( x = y -> ( ph -> ps ) ) -> ( ( E. x ps -> ps ) -> ( A. x ph -> ps ) ) ) |