Metamath Proof Explorer


Theorem bj-spimt2

Description: A step in the proof of spimt . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-spimt2
|- ( A. x ( x = y -> ( ph -> ps ) ) -> ( ( E. x ps -> ps ) -> ( A. x ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 bj-alequex
 |-  ( A. x ( x = y -> ( ph -> ps ) ) -> E. x ( ph -> ps ) )
2 19.35
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) )
3 1 2 sylib
 |-  ( A. x ( x = y -> ( ph -> ps ) ) -> ( A. x ph -> E. x ps ) )
4 3 imim1d
 |-  ( A. x ( x = y -> ( ph -> ps ) ) -> ( ( E. x ps -> ps ) -> ( A. x ph -> ps ) ) )