Description: A step in the proof of spimt . (Contributed by BJ, 2-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-spimt2 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ( ∃ 𝑥 𝜓 → 𝜓 ) → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-alequex | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ∃ 𝑥 ( 𝜑 → 𝜓 ) ) | |
| 2 | 19.35 | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
| 4 | 3 | imim1d | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ( ∃ 𝑥 𝜓 → 𝜓 ) → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |