Metamath Proof Explorer


Theorem bj-spimt2

Description: A step in the proof of spimt . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-spimt2 ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) ) → ( ( ∃ 𝑥 𝜓𝜓 ) → ( ∀ 𝑥 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 bj-alequex ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) ) → ∃ 𝑥 ( 𝜑𝜓 ) )
2 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
3 1 2 sylib ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) ) → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
4 3 imim1d ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) ) → ( ( ∃ 𝑥 𝜓𝜓 ) → ( ∀ 𝑥 𝜑𝜓 ) ) )