Step |
Hyp |
Ref |
Expression |
1 |
|
bj-spimt2 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ( ∃ 𝑥 𝜓 → 𝜓 ) → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
2 |
1
|
imp |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 𝜓 → 𝜓 ) ) → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
3 |
2
|
alanimi |
⊢ ( ( ∀ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) ) → ∀ 𝑦 ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
4 |
|
bj-hbalt |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) ) |
5 |
|
sylgt |
⊢ ( ∀ 𝑦 ( ∀ 𝑥 𝜑 → 𝜓 ) → ( ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) |
6 |
3 4 5
|
syl2im |
⊢ ( ( ∀ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) ) → ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) |
7 |
6
|
expimpd |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ( ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) |
8 |
7
|
alcoms |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ( ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) |