Description: Closed form of cbv3 . (Contributed by BJ, 2-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-cbv3tb | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ( ∀ 𝑦 Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.9t | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∃ 𝑥 𝜓 ↔ 𝜓 ) ) | |
2 | 1 | biimpd | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∃ 𝑥 𝜓 → 𝜓 ) ) |
3 | 2 | alimi | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) ) |
4 | nf5r | ⊢ ( Ⅎ 𝑦 𝜑 → ( 𝜑 → ∀ 𝑦 𝜑 ) ) | |
5 | 4 | alimi | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) ) |
6 | bj-cbv3ta | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ( ∀ 𝑦 ( ∃ 𝑥 𝜓 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) | |
7 | 3 5 6 | syl2ani | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ( ∀ 𝑦 Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) ) |