Description: A theorem close to a closed form of hbsb3 . (Contributed by BJ, 2-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-hbsb3t | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spsbim | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ∀ 𝑦 𝜑 ) ) | |
| 2 | hbsb2a | ⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 𝜑 → ∀ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 3 | 1 2 | syl6 | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) ) |