Description: A theorem close to a closed form of hbsb3 . (Contributed by BJ, 2-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-hbsb3t | |- ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> A. x [ y / x ] ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbim | |- ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> [ y / x ] A. y ph ) ) |
|
2 | hbsb2a | |- ( [ y / x ] A. y ph -> A. x [ y / x ] ph ) |
|
3 | 1 2 | syl6 | |- ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> A. x [ y / x ] ph ) ) |