Description: A theorem close to a closed form of hbsb3 . (Contributed by BJ, 2-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-hbsb3t | |- ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> A. x [ y / x ] ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spsbim | |- ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> [ y / x ] A. y ph ) ) | |
| 2 | hbsb2a | |- ( [ y / x ] A. y ph -> A. x [ y / x ] ph ) | |
| 3 | 1 2 | syl6 | |- ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> A. x [ y / x ] ph ) ) |