Description: Shorter proof of hbsb3 . (Contributed by BJ, 2-May-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bj-hbsb3.1 | |- ( ph -> A. y ph ) | |
| Assertion | bj-hbsb3 | |- ( [ y / x ] ph -> A. x [ y / x ] ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-hbsb3.1 | |- ( ph -> A. y ph ) | |
| 2 | bj-hbsb3t | |- ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> A. x [ y / x ] ph ) ) | |
| 3 | 2 1 | mpg | |- ( [ y / x ] ph -> A. x [ y / x ] ph ) |