Metamath Proof Explorer


Theorem bj-hbsb3

Description: Shorter proof of hbsb3 . (Contributed by BJ, 2-May-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-hbsb3.1
|- ( ph -> A. y ph )
Assertion bj-hbsb3
|- ( [ y / x ] ph -> A. x [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 bj-hbsb3.1
 |-  ( ph -> A. y ph )
2 bj-hbsb3t
 |-  ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> A. x [ y / x ] ph ) )
3 2 1 mpg
 |-  ( [ y / x ] ph -> A. x [ y / x ] ph )