Description: Shorter proof of hbsb3 . (Contributed by BJ, 2-May-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-hbsb3.1 | |- ( ph -> A. y ph ) |
|
Assertion | bj-hbsb3 | |- ( [ y / x ] ph -> A. x [ y / x ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-hbsb3.1 | |- ( ph -> A. y ph ) |
|
2 | bj-hbsb3t | |- ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> A. x [ y / x ] ph ) ) |
|
3 | 2 1 | mpg | |- ( [ y / x ] ph -> A. x [ y / x ] ph ) |